载入中....
设为首页 收藏本站 联系我们 网站地图
论文网
您现在的位置: 免费毕业论文网 >> 理学论文 >> 理学相关 >> 正文
搜索: 论文

一种权重未知的混合多属性决策方法

更新时间 2008-7-5 22:05:35 点击数:

摘 要 针对权重未知的混合多属性决策问题,提出1种基于TOPSIS方法的混合型多属性决策的决策方法。为属性值是精确数、区间数、3角模糊数、语言型的混合型多属性决策问题提供1个新的途径。
  关键词 TOPSIS 混合指标 多属性决策 权重
  中图分类号 C934      文献标识码 A

1 引言
  混合多属性决策是指即含有定量指标又含有定性指标的1类多指标决策。在社会经济管理和工程技术领域有广泛的应用背景。由于社会效益、生态环境等方面的定性指标1般难以作精确量化,以模糊的或不完全的指标形式存在,形成混合型多指标(或多属性)决策。这种决策的属性值以多种类型(如精确数、区间数、3角模糊数、语言型)出现在决策矩阵中,构成了混合型多指标决策问题。目前对于混合型多指标决策问题的研究还很不完善,夏勇其、吴祈宗给出了1种混合型多指标决策问题的TOPSIS方法,闫书丽利用灰色关联度,提出1种基于从属度的方案排序法。在夏勇其、吴祈宗论文中,要求在进行决策时属性权重是已知的,这在实际中往往很难办到。基于此,本文提出1种基于TOPSIS方法的没有任何权重信息的混合型多属性决策的决策方法。该方法适用范围增大,为混合型多属性决策问题提供了很好的解决途径。
2 基于TOPSIS方法的混合多属性决策方法原理
  TOPSIS主要通过构造多属性问题的理想方案和负理想方案,通过计算各方案与理想方案和负理想方案的距离,来确定方案的排序。
设待评价的多属性决策方案有m个,记为A={A1,A2,…,Am},评价指标有n个,记为G={G1,G2,…,Gn},记方案Ai对指标Gj的评价值aij为精确实数型指标{j∈N1=(1,2,…h1)};对指标Gj{j∈N2=(h1+1,h1+2,…h2)}为区间型指标;对指标Gj{j∈N3=(h2+1,h2+2,…h3)}为3角模糊数梯形模糊数型指标;对指标Gj{j∈N4=(h3+1,h3+2,…n)}为语言型指标。记A=(aij)m×n为决策矩阵。
具体步骤如下:
  (1)各类指标值的规范化处理。指标值的规范化处理是将所有指标值根据上述方法进行处理得到决策矩阵B=(bij)m×n。
  (2)确定正理想方案和负理想方案。对于精确实数型指标:
y■■=■b■,j∈N■ y■■=■b■,j∈N■
对于区间型指标:
■■■=y■■,y■■=■b■■,■b■■,j∈N■
■■■=y■■,y■■=■b■■,■b■■,j∈N■
对于3角模糊数型指标:
■■■=y■■,y■■,y■■=
■b■■,■b■■,■b■■,j∈N3
■■■=y■■,y■■,y■■=
■b■■,■b■■,■b■■,j∈N3
对语言型指标,与语言标度相对应的区间数表达形式为:
优:=[0.8,1]良:=[0.6,0.8]中:=[0.4,0.6]
差:=[0.2,0.4]特差:=[0,0.2]
与语言标度相对应的3角模糊数表达形式为:
极好:=[0.8,0.9,1]很好:=[0.7,0.8,0.9] 好:=[0.6,0.7,0.8]
较好:=[0.5,0.6,0.7]1般:=[0.4,0.5,0.6] 较差:=[0.3,0.4,0.5]
差:=[0.2,0.3,0.4]很差:=[0.1,0.2,0.3] 极差:=[0,0.1,0.2]
再由上述方法确定理想指标值和负理想指标值。
记Y+={y+1,y+2,…,y+n}为理想方案;Y-={y-1,y-2,…,y-n}为负理想方案
  (3)根据混合指标建立模型确定指标权系数。各方案ai与理想方案Y+和负理想方案Y-的广义加权距离定义为:
d+(ai,Y+)=■wjD(y+j,bij)2
  d-(ai,Y-)=■wjD(y-j,bij)2
其中,D(y+j,bij),D(y-j,bij)分别表示各类指标值间的距离。各方案ai与Y+越接近,方案越优;各方案ai越远离Y-,方案越优。
为此,对每个方案ai,建立下列规划模型:
mind+(ai,Y+)=■wjD(y+j,bij)2
  maxd-(ai,Y-)=■wjD(y-j,bij)2
s.t■ωj=1ωj≥0 s.t■ωj=1ωj≥0
  由于各方案是公平竞争的,理想方案与各方案及各方案与负理想方案的距离均来自同1组权系数,约束条件相同。因此,对以上两式进行综合,得到求解混合指标权系数及排序值的模型:
minF=■

s.t■ωj=1ωj≥0
  利用MATLAB编程求解,得到混合属性值权系数w=(w1,w2,…,wn)。
  (4)将权系数带入上式得到d+(ai,w)和d-(ai,w)。
计算:ci=■
  显然,ci越小,方案越优,因而也就排得越靠前。
按ci从小到大排列,得到方案的排序。
3 实例计算与分析
  为了说明上述模型及排序方法的有效性,下面以文献中的例子进行分析。
  某国家国防部拟发展1种战术导弹武器装备,研制部门提供4种导弹型号的有关信息。该国防部派出的专家组对4种导弹的战术技术指标进行了详细考察,考察结果见表1,问应选择哪1种导弹以使决策的总效用最大。
  (1)根据模糊语言变量与3角模糊数的关系,用3角模糊数表示决策矩阵中的定性指标得:
A=
2.0 500 [55,56] [4.7,5.7] (0.4,0.5,0.6) (0.8,0.9,1.0)
2.5 540 [30,40] [4.2,5.2] (0.2,0.3,0.4) (0.4,0.5,0.6)
1.8 480 [50,60] [5.0,6.0] (0.6,0.7,0.8) (0.6,0.7,0.8)
2.2 520 [35,45] [4.5,5.5] (0.4,0.5,0.6) (0.4,0.5,0.6)
  利用指标的规范化公式将决策矩阵A规范化得:
B=
0.4671 1.4897 [0.51,0.74] [0.40,0.59]0.5839 0.5289 [0.28,0.46] [0.44,0.66]0.4204 0.4701 [0.47,0.69] [0.38,0.56]0.5139 0.5093 [0.33,0.52] [0.42,0.62]
(0.32,0.48,0.71)(0.52,0.67,0.87)(0.16,0.29,0.47)(0.26,0.37,0.52)(0.49,0.67,0.94)(0.39,0.52,0.70)(0.32,0.48,0.71)(0.26,0.37,0.52)
  确定正理想方案和负理想方案:
Y+=[0.5839,0.5289,[0.51,0.74],[0.44,
0.66],(0.49,0.67,0.94),(0.52,0.67,0.87)]
Y-=[0.4204,0.4701,[0.28,0.46],[0.38,
0.56],(0.16,0.29,0.47),(0.26,0.37,0.52)]
根据模型(2-5)由MATLAB编程计算求解得权系数w为:
w=(0.1072, 0.0528, 0.2421, 0.0692, 0.3060, 0.2227)
将权系数带入(2-1)(2-2)得到d+(ai,w)和d-(ai,w),计算Ci=■
得到方案的排序为:a1>a3>a4>a2。
  本文的方法得出的结果与文献中的结果大致相同,产生稍微差别的主要原因是权重给的不1样,文献中的权重是事先给定的,本文由模型求出的权重更具客观性,更加符合实际,决策结果更加可靠。
参考文献
1 夏勇其,吴祈宗.1种混合型多属性决策问题的Topsis方法[J].系统工程学报,2004(6)
2 闫书丽.多属性决策与集成方法研究[J].武汉理工大学学报,2005(2)
3 徐泽水.基于模糊语言评估的多属性决策方法[J].东南大学学报,2002(4)

返回栏目页:理学相关论文

设为主页】【收藏论文】【保存论文】【打印论文】【回到顶部】【关闭此页